

Science Paper 1 RAG Rating – Separate Sciences (Triple) – HIGHER TIER

Codes refer to Kerboodle Science for Trilogy

Biology	Chemistry	
B1 – Cell Structure and Transport	C1 – Atomic Structure	P1 – Conservation and
Microscopes and magnification	Atoms and ions	Energy stores and trar
Animal, plant and bacterial cells	Sub-atomic particles, electron configuration, isotopes	Energy transfer and w
Specialised eukaryotic cells	Separating mixtures, including simple fractional distillation and	Calculations of gravita
Diffusion, osmosis and active transport	paper chromatography	elastic energy
B2 – Cell Division	History of the development of the atomic model	P2 – Energy Transfer b
Mitosis and growth	C2 – The Periodic Table	Energy transfer by cor
Stem cells and their use	History of the development of the Periodic Table	Infrared radiation
B3 – Organisation and the Digestive System	Chemical and physical properties of Groups 1 (Alkali Metals) and	Specific heat capacity
Tissues and organs	7 (Halogens)	 Heating and insulating
The digestive system and food tests	Trends in the Periodic Table	P3 – Energy Resources
Enzymes and factors that affect their activity	Transition metals	 Demand and supply of
B4 – Organising Animals and Plants	C3 – Structure and Bonding	 Non-renewable energy
Blood and blood vessels	Particles and states of matter	stations)
Structure of the heart, valve replacement and artificial hearts	Ionic substances and ionic bonding	Renewable energy sou
Breathing and gas exchange	Covalent substances and covalent bonding	Energy generation and
Plant tissues, transport and transpiration in plants	Simple and giant covalent structures	P4 – Electric Circuits
B5 – Communicable Diseases	Forms of carbon	Static electricity
Health, disease and pathogens; defences of the body	Metals, alloys and metallic bonding	Current and charge
Growing bacteria a lab (aseptic technique)	Nanoparticles and their applications	Potential difference an
Examples of viral/bacterial/fungal diseases in animals/plants	C4 – Chemical Calculations	Components
Plant diseases and defences	Calculating relative formula masses, reacting masses and moles	Series and parallel circ
B6 – Preventing and Treating Disease	Using masses to balance equations	P5 – Electricity in the H
Vaccination; antibiotics; painkillers	Yield and atom economy	Direct and alternating
Discovering new drugs and drugs trials	Expressing concentration of solutions	Cables and plugs
Making and using monoclonal antibodies	Titrations and calculations	Electrical power
B7 – Non-Communicable Diseases	Volume of gases	 Appliances and efficier
Cancer	C5 – Chemical Changes	P6 – Molecules and Ma
Risks of smoking, poor diet, lack of exercise and alcohol	Reactivity series	Density
B8 – Photosynthesis	Displacement reactions	 Describing arrangement
Photosynthesis equation and how it works in plants	Ionic equations; half equations	solids/liquids/gas
Experiments to show photosynthesis or its rate	Reactions of metals with oxygen, water, acids	Changes of state
• Effects of CO ₂ , temperature and light intensity on rate	Reactions of soluble and insoluble bases with acids	Internal energy
How plants use glucose	pH scale and indicators	Specific latent heat
B9 – Respiration	Strong and weak acids	Gas pressure and tem
Aerobic respiration	C6 – Electrolysis	Gas pressure and volu
Effects of exercise	Electrolysis of molten ionic compounds or aqueous solutions	P7 – Radioactivity
Anaerobic respiration	Prediction of products at each electrode	Atoms and radiation
Role of the liver and metabolism	Extraction of aluminium	Discovery of the nucle
	C7 – Energy Changes	Alpha, beta and gamm
	Describing exothermic and endothermic reactions	hazards and uses
	Uses of exo and endothermic reactions	Activity and half-life
	Reaction profile diagrams	Nuclear radiation in m
	Bond energy calculations	Nuclear fission and nu

• Cells, batteries and fuel cells

Physics

Dissipation of Energy nsfers; conservation of energy work done ational potential energy changes, kinetic and

by Heating nduction

y buildings f energy y sources (fossil fuel and nuclear power

urces and electricity generation d the environment

nd resistance

cuits Home current

ncy **atter**

ent and behaviour of particles in

iperature *ume*

eus na radiation – different characteristics,

Nuclear radiation in medicine
Nuclear fission and nuclear fusion
Background radiation; risks & safety; nuclear waste

